Meta‐analysis with missing study‐level sample variance data
نویسندگان
چکیده
منابع مشابه
Asymptotic algorithm for computing the sample variance of interval data
The problem of the sample variance computation for epistemic inter-val-valued data is, in general, NP-hard. Therefore, known efficient algorithms for computing variance require strong restrictions on admissible intervals like the no-subset property or heavy limitations on the number of possible intersections between intervals. A new asymptotic algorithm for computing the upper bound of the samp...
متن کاملNonparametric variance function estimation with missing data
In this paper a fixed design regression model where the errors follow a strictly stationary process is considered. In this model the conditional mean function and the conditional variance function are unknown curves. Correlated errors when observations are missing in the response variable are assumed. Four nonparametric estimators of the conditional variance function based on local polynomial f...
متن کاملDEA with Missing Data: An Interval Data Assignment Approach
In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the prop...
متن کاملLinearization Variance Estimators for Survey Data with Missing Responses
Taylor linearization is a popular method of variance estimation for complex statistics such as ratio and regression estimators and logistic regression coefficient estimators. It is generally applicable to any sampling design that permits unbiased variance estimation for linear estimators, and it is computationally simpler than a resampling method such as the jackknife. However, it can lead to m...
متن کاملSimultaneous Source for non-uniform data variance and missing data
The use of simultaneous sources in geophysical inverse problems has revolutionized the ability to deal with large scale data sets that are obtained from multiple source experiments. However, the technique breaks when the data has non-uniform standard deviation or when some data are missing. In this paper we develop, study, and compare a number of techniques that enable to utilize advantages of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics in Medicine
سال: 2016
ISSN: 0277-6715,1097-0258
DOI: 10.1002/sim.6908